Detection of artificial pulmonary lung nodules in ultralow-dose CT using an ex vivo lung phantom
نویسندگان
چکیده
OBJECTIVES To assess the image quality of 3 different ultralow-dose CT protocols on pulmonary nodule depiction in a ventilated ex vivo-system. MATERIALS AND METHODS Four porcine lungs were inflated inside a dedicated chest phantom and prepared with n = 195 artificial nodules (0.5-1 mL). The artificial chest wall was filled with water to simulate the absorption of a human chest. Images were acquired with a 2x192-row detector CT using low-dose (reference protocol with a tube voltage of 120 kV) and 3 different ULD protocols (respective effective doses: 1mSv and 0.1mSv). A different tube voltage was used for each ULD protocol: 70kV, 100kV with tin filter (100kV_Sn) and 150kV with tin filter (150kV_Sn). Nodule delineation was assessed by two observers (scores 1-5, 1 = unsure, 5 = high confidence). RESULTS The diameter of the 195 detected artificial nodules ranged from 0.9-21.5 mm (mean 7.84 mm ± 5.31). The best ULD scores were achieved using 100kV_Sn and 70 kV ULD protocols (4.14 and 4.06 respectively). Both protocols were not significantly different (p = 0.244). The mean score of 3.78 in ULD 150kV_Sn was significantly lower compared to the 100kV_Sn ULD protocol (p = 0.008). CONCLUSION The results of this experiment, conducted in a realistic setting show the feasibility of ultralow-dose CT for the detection of pulmonary nodules.
منابع مشابه
طراحی سیستم کمک تشخیص کامپیوتری نوین به منظور شناسایی ندولهای ریوی در تصاویر سیتی اسکن
Background: Lung diseases and lung cancer are among the most dangerous diseases with high mortality in both men and women. Lung nodules are abnormal pulmonary masses and are among major lung symptoms. A Computer Aided Diagnosis (CAD) system may play an important role in accurate and early detection of lung nodules. This article presents a new CAD system for lung nodule detection from chest comp...
متن کاملAutomated classification of pulmonary nodules through a retrospective analysis of conventional CT and two-phase PET images in patients undergoing biopsy
Objective(s): Positron emission tomography/computed tomography (PET/CT) examination is commonly used for the evaluation of pulmonary nodules since it provides both anatomical and functional information. However, given the dependence of this evaluation on physician’s subjective judgment, the results could be variable. The purpose of this study was to develop an automated scheme for the classific...
متن کاملA New Computer-Aided Detection System for Pulmonary Nodule in CT Scan Images of Cancerous Patients
Introduction: In the lung cancers, a computer-aided detection system that is capable of detecting very small glands in high volume of CT images is very useful.This study provided a novelsystem for detection of pulmonary nodules in CT image. Methods: In a case-control study, CT scans of the chest of 20 patients referred to Yazd Social Security Hospital were examined. In the two-dimensional and ...
متن کاملInvestigation of lung nodule detectability in low-dose 320-slice computed tomography.
Low-dose imaging protocols in chest CT are important in the screening and surveillance of suspicious and indeterminate lung nodules. Techniques that maintain nodule detectability yet permit dose reduction, particularly for large body habitus, were investigated. The objective of this study was to determine the extent to which radiation dose can be minimized while maintaining diagnostic performan...
متن کاملOptimal Dose Levels in Screening Chest CT for Unimpaired Detection and Volumetry of Lung Nodules, with and without Computer Assisted Detection at Minimal Patient Radiation
OBJECTIVES The aim of this phantom study was to minimize the radiation dose by finding the best combination of low tube current and low voltage that would result in accurate volume measurements when compared to standard CT imaging without significantly decreasing the sensitivity of detecting lung nodules both with and without the assistance of CAD. METHODS An anthropomorphic chest phantom con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 13 شماره
صفحات -
تاریخ انتشار 2018